Manufacturing Engines Using Additive Manufacturing

3D printed rocket engine goes into space from New Zealand

This motor has been 3D printed in only 24 hours. This rocket engine has been developed by a US company called RocketLab. Details about the materials and the manufacturing process are not available, but we know that additive manufacturing allowed them to create important engine components really quickly. This process is allowing them to get lighter parts, thanks to an optimized design.Australian engine,

Australian engine rocket has successfully been fire tested

3D printed engine created by engineers in Australia’s Monash University. 3D printing allowed to create a rocket with a different shape, to improve the propulsion of the rocket. The goal of this experiment was to work on a new design to make the rocket even more efficient, and 3D printing is the best method to improve this aspect really easily.

This manufacturing process definitely allows to work faster: this project went from idea to testing in only four months. In the end, this engine and its aerospace design succeeded the hotfire tests!

3D printed internal combustion engine.

Each year, the Shell Eco-marathon invites students from all over the world to compete and develop innovative and energy-efficient vehicles. If 3D printing has been used by some participants, a team from the University of Canterbury in New Zealand created the world’s first 3D printed titanium internal combustion engine (ICE) for their car in this year’s Eco-marathon Asia!

Most of the time, while 3D printing is used in the manufacturing process of engines, only a few components are actually 3D printed. In this precise project, the whole engine has been 3D printed using titanium and runs on sustainable, carbon-neutral ethanol. This project is showing how it is possible to develop innovative solutions, with technologies such as 3D printing.

3D printed internal combustion engine
Each year, the Shell Eco-marathon invites students from all over the world to compete and develop innovative and energy-efficient vehicles. If 3D printing has been used by some participants, a team from the University of Canterbury in New Zealand created the world’s first 3D printed titanium internal combustion engine (ICE) for their car in this year’s Eco-marathon Asia!

Most of the time, while 3D printing is used in the manufacturing process of engines, only a few components are actually 3D printed. In this precise project, the whole engine has been 3D printed using titanium and runs on sustainable, carbon-neutral ethanol. This project is showing how it is possible to develop innovative solutions, with technologies such as 3D printing.

3D printed Toyota 4 22RE engine
Chinese company Winbo Smart Tech 3D printed a four-cylinder Toyota engine in only three days using FDM 3D printers. This engine is composed of 130 entirely 3D printed parts, to show the potential of 3D printing machines: all kinds of parts are 3D printable and can easily be assembled.

Engineers working for NASA are prototyping a rocket engine
Additive manufacturing is an amazing tool to make prototypes. Prototyping with metal 3D printing is now possible, but using this technology to print with two different materials is still difficult. But for NASA engineers, difficult doesn’t mean impossible. They actually created a rocket engine prototype using two different metals: copper alloy and Inconel. They used a process called brazing, in order to join 2 different types of metal, creating a brand new component. This advanced process is offering promising possibilities for future 3D printed metal parts.

SuperDraco, an engine made thanks to additive manufacturing
SpaceX is known to use 3D printing a lot. They actually built a rocket engine using 3D printing, it is called SuperDraco. This process has been used on different levels. First, for testing, 3D printing has been used instead of the traditional casting method. 3D printing has also been an advantage for the manufacturing process, and it really reduced the lead-time. The 3D printed parts were even more resistant than traditional ones.

3D printing: A way to reduce costs for NASA
Creating motor parts using 3D printing is actually helping NASA to reduce engine costs. Indeed, it is allowing them to get more affordable parts. 3D printing complex shapes in just one part allows to avoid welds. Indeed, optimizing the design helps to reduce the number of welds, and it can obviously reduce costs and production time. That is why this manufacturing process will be more and more used in the future to build rocket engines for NASA tests.

3D printing is really seen as a serious technology. It has even been part of the recent RS25 tests. The RS25 engine is the most powerful rocket engine ever created. This Space Launch System has a 3D printed component called pogo accumulator, a shock absorber placed inside of the rocket engine.

Leave a Reply

Your email address will not be published. Required fields are marked *